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L. INTRODUCTION

During the period from July 1, 19S6 through August 31. 19S9. the execution of contract

No. F71962•-SG-C-0019 was directed toward the development and imiplem•e tation of numerical

methods for simulating and describing the transport of electrons and photons in Ia,.ered ,ae-

dimensional and multiregion two- and three-dimensional structures such as metallized

semiconductors. In addition to microelectronic device structures. the numerical methods

de!veloped weie alou applied to liquid media (i.e. H ,O). The transport simulations were used

to caculate charge distributions and to predict dose distributions in these media. resulting

fromn electron beams and sources of x- and gamma irradiation. Another important aspect of

tle electrott transport calculation, activity during thi contract was the extension of the range

of our ,inmulation capability to electron-phonon scattering. The effects of this interaction and

the effect of the presence of applied electric fieids on the energy spectra and spatial distribution

of electrons in SiOG, were examined, with particular attention to the promotion of electron

energies fromn the subionization region to energies above the ionization threshold and the

resulting electron multiplication. Some of the results of the electron and photon transport

calculations are reported in seven technical papers in which the principal investigator shared

authorsnip.

The electron and photon transport calculations were made using the methud of diL .rete

ordinates and the Monte Carlo trajectory simulatiop method. The discrete ordinates

calculations were made using the ONETRAN[11 computer code. With this code we calculated:

(1) charge distributions and energy deposition in nine materials due to the incidence of

monodirectional electron sources for several energies and incident argles; (2) electron and

Dhoton transport in HO; (3) energy deposition in and electron transmission energy spectra

from Al for the purpose of comparison with independent transport calculations made using the

method of streaming rays. The Monte Carlo method was used to perform electron transport

cal,:ulations in one-, two- and three-dimensions. Most of the Monte Carlo calculations

involved the use of the ITS121code series. However, some of the one-dimensional calculations

were performed with Monte Carlo programs which we wrote expressly for the purpose: in

particular an Plectron transport calculation to test a new scattering cross section formulation:

and an electron-phonon scattering simulation.



This report is organized into five sections in addition to this, the introduction. Section II

is a discussion and presentation of results of one-dimensional discrete ordinates calculations of

electron and photon transport. Section III presents the results of electron transport Monte

Carlo calculations in one-, two- and three-dimensions and shows compaiisons of these results

with transport solutions obtained by other methods. Section IV consists of a discussion of

electron-phonon scattering and some of the results obtained with our Monte Carlo simulation

of electron transport in the 1 to 20 eV energy rarge. Section V is a discussion of the

formulation of and progress made towards a discrete ordinates solution to the electron

transport problem in the 1 to 20 eV energy range. The final section, VI, is a list of the

references cited throughout this report.
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I1. DISCRETE ORDINATES CALCULATIONS ._E ELECTRON AND PHOTON

TRANSPORT IN ONE-DIMENSION

L. Introduction

Prior to the .zoart of t!i12 reporting period, we had acquired a substantial amount of

experience in adapting the multigroup. discrete ordinates method to die calculation of electron

energy deposition profiles a.id electron flux distributions in several materials. In view of this.

it was deemed appropriate, during the performance of this contract, to perform a systematic

study of the range of validity of this method. The conclusions reached as a result of

performing this work were: 1) that the simple continuous-slowing-down approximation

(CSDA) electron transport model was adequate for electron transport calculations in the

energy range 100 keV to -1.5 MeV for a wide range of scattering materials- and 2) above this

energy range. the CSDA proved inadequate. This second conclusion led to an extensive

amount of effort to account for radiative energy losses and knock-on secondary electron

production in our transport calculations. To account for these two electron energy loss

mechanisms, we began an effort to apply the discrete ordinates method to electron-photon

transport. We shall first discuss the results of the application of the method of discrete

ordinates, incorporating only the CSDA model, to the determination of electron energy

deposition and charge distributions in several materials. Following this will be a discussion of

our application of the discrete ordinates mathod to electron-photon transport.

2. Application of the Discrete Ordinates Method to Electron Transport in the Q... 1.4 MeV

Energv Range

The multigroup discrete ordinates code ONETRAN[i] was used to calculate energy

deposition profiles and charge distributions in a number of solids due to the incidence of

electron beams ranging in energy from 0.1 to 1.4 MeV. In these calculations electron energ)

loss was allowed only through application of the continuous-slowing-down approximation

(CSDA). Thus energy downscatter was allowed only between adjacent energy groups. Energy

losses through radiative processes or through catastrophic (knock-on) collisions were not

considered. The primary motivation for this study was to determine the range of validity of

the method of discrete ordinates under the above straightforward assumptions. The transport

calculations were made for several materials over a wide range of atomic numbers (Z=4 - 92).

A large body of data1 3'4] experimental measurements and Monte Carlo calculations of energy

deposition, was available to us for comparison purposes. Some of the results obtained will be
3



presented here. Htowever, the complete body of results and comparisons, consisting of 3 flux

po;ts. 14 ,nergy- deposition plots, a trancmission spectrum and a reflection spectrum, is

presented in Ref. 5.

Since the basic principles of the discrete ordinates method are presen•, briefly in Ref. 5

and extensively elsewhere (e.g. Ref.6). it is sufficient to state here that in the multigroup

approximation. the electron energy range is divided into a number of energy groups of width

AE9: the nionoenergetic trantsport equation is then solved for each encrgy group flux, c,, with

the removal cross section a,. for group g given by CSDA as

•ag = S(Eg)/Agg, (1)

where S(E.) is the collision stopping power for electrons with energy E9 . If the group

structure is arranged sich that increasing group index g corresponds to decreasing energy, then

the electrons removed from group .9, Ua; 9 . become the inscatter source to group g+1. The

group flux, og, i.i a function of position and angle. The angular dependence is treated by

resolving the flux into a Pumber of angular components, each corresponding to a particular

discrete ordinate, and then solving the transport equation for each of these components. The

spatial(x) dependence of the flux is solved for by the use of the diamond difference

approximation, or in the case of ONETRAN, the linear discontinuous finite element

approximation.

If we define the angular flux along a particular discrete ordinate, say a•, as 0,,(x). then

we can, by integration over angle, obtain the group scalar flux i(x). if the integration is

performed numerically, then M

(x)= , (2)

where the w, are the numerical quadrature weights corresponding to the discrete ordinate

direction pi. A sample plot of .•g(x) is shown in Fig. 1 for the case of a 1 MeV

monodirectiorial electron source, incident direction pa = 1.0, located at x = 0 in an infinite

medium of Be(Z=4). The ONETRAN calculation was made for 200 energy groups of equal

width. Shown in Fig. 1 are the group scalar fluxes, as a function of distance, for every tenth

group, beginning with a top energy of 0.95 MeV. From a figure such as this one can gain an

appreciation for the change in the spatial characteristics of thle charge distribution as the

electron energy decreases. In Ref. 5 other scalar flux plots are given for 1 MeV electron in
4



higher Z materials. Fe',Z=26) and Ta(Z=73).

2! - MeV

20- I /0.90 Me%,,

0.85 MeV

X -- 0.80 MeV

JT. -0.75 MeV

0C

10-

0 5-

-0.4 -0,. -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0 0.6 0.1 0.8

Depth (g/cm2)
Figure 1. Electron group scalar flux, as calculated with ONETRAN (i, in an infinite medium

of Be for 1 MeV electrons incident at an angle of 0" (Ref. 5) .

From these it can be observed that the directionality of the source electrons is sooner

'zVrgotten" in the high Z materials than in materials of lower Z. Since the scattering in low Z

materials is more anisotropic than for high Z, the electrons approach diffusive behavior sooner

(at higher -nergy) than in, low Z materials.



The energy deposition profile \\Wx; is calculated as

G
\\(x) p qo(x) S(Eq) + o,(x) S(Ej) (3)

whtere 60(x) is the unscattered flux at the source energy E0 . and G is the total nurnber of

groups. r\ypical energy deposition profile plots are shown in Figs. 2, 3 and 4. In all three of

these figures we compare our ONETRAN result (solid curve) with the Monte Carlo calculatiouj

(histogram) and experimental calorimetric measurements(circles) of Lockwood, Miller and

Ilalbleib[3}. In Fig. 2, the energy deposition is plotted for a 0.1 Me\" electron beam normally

incident on Be. The agreement with Monte Carlo is good, but not perfect. The agreenlieut

with experiment is not very good. ,ut then neither is the agreement between experiment and

Monte Carlo. Fig. 3 shows the energy deposition results for a slant beam (60*) of 0.5 N.leV

electrons incident on Mo. The overall agreement among the three mett:ods is much better il

this case. The resultq of a ONET:3AN calculation for a three-layered scattering medium

(Al/Au/Al) is shown in Fig. 4. A 1.0 MeV electron beam is normally incident on the vacuum

boundary of the leftmost layer (Al). As can be seen, the agreement is very good.

3. Extension of the Discrete Ordinates Method to Coupled Electron-Photon Transport in thle

1 Me\ : 2q AICL Energy Range

As was stated in the above section, very good agreement with experimental and Monte

Carlo energy deposition data was achieved for electron sources in the energy range 0.1 to 1I..

MeV. in tile one high energy case tha: we treated in Ref. 5, the 2U Me\ electron be;11n

incident on 1120, the energy deposition profile obtained did not agree well with Monte Carlo

results(-I (see Fig. 5). It became apparent that for high electron source energies, it would be

necessary to include consideration of radiative energy losses in our calculations. The success of

the coupled electron-photon S, calculations performed by Lorence, Nelson and MorelL81 for

isotropic electron sources provided us with sufficient encouragement to perform a set of

calculations for high energy electron beam sources, in particular to repez'.t the 20 MeV-ll..0

calculation. The technique developed would then be applied to other beam energies in 1t.1

and other materials as well. We installed a bremsstrahlung photon pioduction and transport

module into our code.

6
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Figure 2. Energy deposition, as calculated with ONETRAN 1 ], in semi-infinite Be for 0.1

MeV electrons incident at an angle of 0' (Ref. 5). Circles (experiment) and histogram (Monte

Carlo) data taken from Ref. 4.
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5.0 -

: 4.0 0 Molybdenum, 0.5 MeV, 60 degrees
0

C3.0 -
0 O\

0~

62.0o 2.0-

L.

1.0

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fracfion of a Mean Range

Figure 3. Energy deposition. as calculated with ONETRAN[1 1 in semi-infinite Mo for 0.5
MeV electrons incident at an angle of 60" (Ref. 5). Circles (experiment) and histogram
(Monte Carlo) data taken from Ref. 4.



Alu minum/Gold/Aluminum, 1.0 MeV, 0 degrees
4.0

302.

.~20

0
C-

10

0.0-
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Frccion of a Mean Range

Figure 4. Energy deposition, as calculated with ONETRAN W, in a Al/Au/Al configuration
for 1.0 MeV electrons incident at an angle of 0' (Ref. 5). Circles (experiment) and histogram
(Monte Carlo) data taken from Ref. 4.



2,2 i,2.4

E1.6

>1 .4 -•wATER

1. 20 Me.V Beam Source
.Normal tncidence at X = 0

U)0.8- ONETRAN (200 groups)

tZ• 0. 6 a CYLTRAN

0 \

0.4 " •

0.2-

0~ ~ 0 •(c •S 111

Figure 5. Energy deposition. as calculated with ONETR.AN[H in semi-infinite 1120O for 20

MeV' electrons incident, at an angle of 0" (Ref. 5). Circles (experiment) and histogram (Monte

Carlo) data. taken from R~ef. 7.
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3. Elecmtron Eneryv Loss Cross Sections

In our previous calculations it was assumed that electron energy loss was adequately

described by the continuous slowing down approximation (CSDA). In •ne multigroup S,,

formulation, energy downscatter of electrons was allowed to occur only between adjacent

energy groups. This simplifying assumption led to the use of a version of the ONETRAN code

much smaller in size and complexity than the original. Inclusion of radiative energy losses

necessitated the use of the full ONETRAN capability to allow for energy downscatter betv.een

any two groups. As for the radiative energy loss cross sections, we performed our early

calculations with a ve.y approximate elementary treatment[9], subsequently improved, for the

bremsstrahlung generation cross sections which proceeded as follows:

the differential cross section for the emission of a photon with energy between k(=hv) and

k-1-dk by an electron with kinetic energy E as it passes through a scattering medium is given

by

rod = NB7o 2Z(E +rnc 2 ) (cm- 1 ) (4)

where ca, is a constalLt,

B is a slowly varying function of E,

Z is the atomic number of the scattering medium,

mOc 2 is the electron rest energy (all energies are expressed in MeV),

N is the nuiiber of atoms/cm3 .

The radiative stopping power (electron radiative energy loss per unit path length) is defined as

E
( .),. = N kdoU-,Id (MeV/cm) (5)

0

Substituting Eq.(4) into Eq. (5),

T's d= NooZ 2 (E + moc2)B d(k/E)
0

= NaoZ 2(E + moc 2)- , (6)

1

where f -JB d(k/E) (7)

0



is the average value of B over the allowed photon energy range.

If the parameter B of Eq.(4) is sufficiently slowly varying, we may approximate it as

B . (8j

Then Eq.(4) becomes

ad CBZ(E + fl1C-ddE dk (cm 1 ) (9)

dk
or da',.,E -d-s)•k

Eq. 9 formed the basis for our earl)y calculations of multigroup bremsstrahlung cross sections.

Numrcrical evaluation of the radiative stopping power was facilitated for us by the fact that the

DATPAC () program calculates this quantity for arbitrary E and Z, and we had alrcady

adLncd the DATPAC program to supply the Mott and Riley scattering cross sectiott,. lbr

electrons.

The preponderance of literature pertaining to the calculation of bremssL.'ahlung -iut.,:

sections 10-3) was a strong indication that the accuracy of our coupled electron-phwton

calculations might be significantly improved by the use of a inure sophisticated bremsstrahiiirg

cross section model than that given above. By fortunate circumstance, the DATPAC'

program incorporates much of the physics formulated in the Koch and Motztt0 1 paper and

provides tabulations of the differential cross section (kdO' 7 ,d/dk) as a function of eleciroi

energy E for arbitrary E and Z values. We extracted this data from DATPAC. In Fig. G 'k

made a log-log plot of (do0 4 d/dk) vs. k for the top ten electron energy groups in a 100 group

ONETRAN calculation where we took the electron source energy to be a 20 MeV beam

incident on 1120. Thus the ten curves correspond to electron energies ranging from 19.9 to

18.1 MeV in 0.2 MeV increments. The points indicate the tabulated values from DATt'.A-.

While the curves are themselves difficult to read, we concluded from this plot and other!'

similar to it, that the bremsstrahlung cross section could be easily approximated by straight

lines (on log-log scale) connecting the points calculated by DATPAC. Thus, our

approximation algorithm for (do',ad/dk) is of the form

"d 'r-d -, A kb, (10)
dk

where A and b are constant between any pair of points calculated by DATPAC. A uniqur

determination of A and b is made for each point pair.
12



In our coupled electron-photoir transport calculation, the multigroup cross sections for

enceigy du\ !,sca, t,.i of electron.L: b rtadiati\e energy loss were calculated as follow•:

gi;Cer an electro:. ,u;:,'r I i) s:: c'ume (as s'ow rn Iii Fig. 7, with GC unihl i in~lx spaced electron

energy groups. eac:. cr~aractelized b\ midpoint energy E- twvhere E ;>L,.- i. ther, the cross

secrion: for errL-~siui, of a photon, v. ithl energy k i= 1-v) between k: and k... say. i

k0,

S(11)

kr

Energy 
Group

U I E----

GROUPS I -10

E2 2

000
EEg--

u 0001 0

Ej+1/2

00001

G-1

000001 -'-, ,-,,--, ,
10

k (MeV) EG-

Fig 6 Differential bremsstrahlung cvý,ss section Fig.7. Electron energy group structure
for 10 electron energies ,19.9-18.1(.2)MeV] as
calculated by OATPAC[']

If we assurne that tIre energy of the electron after photon emission is E,, then the limits of the

integral are
13



k-= Eg E- /- t 12a)

k, =Eg E1/2(12b)

or (E)-~~) kl(.Eg Et.. 1 , 2 ). (12c)

where F,1. and E ,-,/, are the tipper arid lower energy bound, of group i.

It mnay theii he said tl~at the dowziicat~ter cross (cct~ioi from in I1Op g, to group I due to thle

Cris-S101 Of a photont withI energy betwveen k, and] k., is

rad (13)

whvier ag(1k is calculated fromt Eqs. 10 and I1I abolve.

3.2 lBreins~trahliina Pho~ton Source

lIn adIdition to providing the mecans by which the electron dowriscatter due to radiative

energy loss could be incorporated into the S,, calculation, the cross sections. L,- ,Were used

to determiine the photoni source function. The procedure we followed was: 1) performi the

elect ron transport calculation with the O.N LItA..N S, code; 2) retain a. file of electron fluxes

as functions of energy (group) and position; 3) calculate the photon source for use in a

s'- hsequent photoni transport calculation; -1) performn the photon transport calculation with

ONE'1HAN usinig multigroup photon cross sections which we generated with the GANILEG

code' !11; 5jj calculate deposition profiles from both the electron (using flux file from step 1 and

collision stopping powers) and photon contributions(using photon flux file from step 4 and

eniergy absorption coeifficients computed by GA-M~LEG). Thre energy group structure fo.r the

electroi tranrsport calculation was taken to be uiniformi. that is AEF = E, - E,ý1 for all 1. The

photon energy grou p spacing was takeni to be uniform for some calculation, and logarithmic

for others, The transport calculations were carried out for 1120. and for the source energies

considered, the energy lost to radiation was generally a smrall fraction of the total energy loss

by the electr-ons. WVe found that our results were insensitive to tile p)hoton energy group

structure. possibly due to thle small overall radiative energy contri butio!r . Also foi this

reason, %ve deterimijintd that a second electron transport calculation arising from the presence of

C~omnptoii arid photo-elect rons woulId not significantly alter the results.



We made considerable modifications to the original version of the photon cross section

calculation program GANILEG[ 141 . The original version. published in 196i. was writte:i ifl

FORTRAN IV and incorporated a set of Biggs-Lighthill coefficients compiled in 1966. We

updated the coding to FORTRAN-77 and incorporated the latest available set of Biggs-

Lighthill cueffiieetz, "5,and approximation algorithms for the cross sections. Also in the

original version the photon cross sections could be calculated for up to 20 eiements per run.

We changed the code so that it now computes cross sections for an arbitrarily large (user-

specified) number of chemical elements. We configured the code is now configured so that for

a chemical compound, we enter as input the chemical symbol and weight fraction for each

constituent element. The new input data structure, as we configured it. is identical to that

implemented ip the ITS code system.

3.3 Results for , A and U NIe\' Electron Beam sources

Figures 8 and 9 show the energy deposition results obtained with a 100 group coupled

ONETRAN calculation for a 5 MeV electron beam normally incident on 1120. The "'siab"

thickness for the electron calculation was taken to be 3 cm (the range of 5 MeV electrons in

1120 is 2.G cm.). The depth of the scattering medium was extended to 10 ca. for the pliUton

calculation to account for the backscatter of photons transported, due to their long meani free

path, beyond 3 cm. In Figure 8 the total (electron -+ photoai) energy deposition profile

calculated with the ONETRAN code (solid curve) is compared with a TIGERI 2]Monte Carlo

calculation (histogram). The agreement between ONETRAN and TIGER is good, with the

exception of the region between 1.25 and 1.8 cm. The electron beam source energy of 5 MeV

pretty much delineates the point where errors due to numerical straggling become noticable.

We believe that the consistently higher ONETRAN result shown between 1.25 and 1.8 cm. is

primarily caused by numerical straggling, an error source caused by using the multigroup

energy discretization scheme which is first-order accurate. As will be seen, this effect shows up

more prominently as the source energy is increased. In Figure 9 we have plotted the energy

deposition contribution of the bremsstrahlung photons for the 5 MeV electron source case.

The agreement is generally good, although the TIGER histogram indicates that not enough

histories were run to achieve statistical reliability. As can be seen from the photon dose scale,

the maximum photon dose contribution is approximately 0.15% of the maximum electron dose

contribution. For the electron transport, a 20 term extended transport corrected scattering

cross section was used in an S20 ONETRAN calculation. For the photon transport, a P 4

scattering cross section model was used in an S20 ONETRAN calculatio.i.
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Figure 8. Energy deposition (electron + photon) profile, as calculated with ONETRAN

(curve) and with ITS-TIGER[ 2](histogram), in semi-infinite H20 for 5 MeV electrons incident

at an angle of 0'.
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In Figures 10 and 11 are plotted the total (electron + photon) and photon energy

deposition profiles obtained with a 40 group coupled ONETRAN calculation for a 20 MeV

electron bearn normally incident on 1l1O, 12 cm. thickness (20 \IeV election range in H.,O is

9.3 cm.). As in the previously descrihbd calculation, an extended scattering medium depth was

assumed •UO cm.). In Figure 10 the energy deposition profile calculated with the ONETRAN

code (solid curve) is compared with a TIGER Monte Carlo calculation (solid histogram) and

an EGS4 1'1 Monte Carlo calculation (dashed histogram). The agreement between ONETRAN

and TIGER is excellent to a depth of about 5.5 cm., beyond which the ONETRAN result is

consistently higher. The EGS4 calculation includes knock-on electrons which account for the

lower energy deposition in the first 1 to 1.5 cm. (when knock-ons are included in the TIGER

calculation, the two Monte Carlo results agree very well). The photon dose results (Fig. 11)

agree fairly well. We believe that the ditcrepaiicies found may be caused in part by our crude

model for the photon source angular distribution. The effects of numerical straggling on the

electron energy deposition profile (Fig. 10) are definitely more pronounced for the 20 .MeV

source than for the 5 MeV case. This was somewhat mitigated by increasing the number of

energy groups, but even when we increased the numLjer of groups to 100, the straggling effect

persisted and was significant.

3.4 Knock-on Electron Produlction

In modelling high energy electron transport, we made modifications to our electron cross

section module that would include electron energy losses and secondary electron production

tl.rough knock-on collisions. As was stated, the EGS4 calculation shown in Fig.10 included the

effects of knock-on electron production, while TIGER was run for the case of no knock-ons.

\When knock-ons were taken into account, the dose near the surface of iicidenice wab foL.,id tu

be about 5 percent lower than that obtained without the knock-ons. Evidently, the highest

energy electrons suffL.ed a sufficient amount of knock-on collisions to experience significant

downscatter in energy. As primary electrons penetrate the medium, the continuous slowing-

down collisional and radiative energy losses outweigh any visible effect of downscatter through

knock-on collisions. In order to resolve this disagreement between Monte Carlo and discrete

ordinates, we installted a knock-on algorithm in the calculation of the electron energy loas

cross sections for the ONETRAN calculation.
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Accounting for downscatter of primary electrons and secondary electron production due to

knock-on collisions, translated into the calculation of multigroup cross sections for these

proceses. Along with this, it was found necessary to use a modified stopping power function to

account for the fact that some of the energy of the primary electrons. rather than being

entirely expended along the primary track, is transfered to secondary electrons, which are in

turn downscattered. The definition of -restricted collision stopping power" and the means for

its calculation are provided in Ref. 16.

Our calculation of the multigroup knock-on cross sections proceeded as follows:

the total knock-on cross section (ork*) for primary electrons in group g with energy Eq is given

by

.ac( =lC

where f = ( (15)

andE (Ecc =- 0.01 MeV) (16)

Etec and Ecu, a' respectively, the secondary electron energy and low energy cutoff for

the secondary electrons,a nd(ll

da =.. C 1 1 jJT )2 (2r+1) ( 1\1(7
_\ FEI + 7 17a? ? (-C)2 ~r+1, (T+1)ý (. (1-C),

with C = 27rNaromc2 (=.153536 =), r E= ( = the group energy in inc 2

units). 03 is the electron velocity divided by the speed of light, N. = Avogadro's number, r0 =

electron radius, Z and A are the atomic number and weight, respectively, and (Z) signifies

the average Z/A for the molecular composition of the scattering material.

If we allow the maximum fractional energy loss of the primary to be fmaz -1/2, as

indicated in the upper limit of the integral (Eq.14), then the total knock-on cross section for

group g is
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L3EC (2+ In r~~1j} (18)

In view of the above, and given the electron energy group structure, uniformly spaced

energy groups of width AE, as depicted in Fig. 12, the cross section for and electron with

energy Eg to produce a knock-on with energy E., and therefore suffer a reduction in its own

energy to E 5 ,, (= E - E, ) is

174 - .9 , = 19)

S 0 ( E,/ E9 Ž (,n-r)

where

( -- n { E , ( ma

and 2= max { E-- ,E (m, . '2!)

Combining Eqs. 17 .19-21 we obtained for the group-to-group cross section,

C3~g E. 2 EV-~ + Eg __ __

1 . +_AE E .1A E

+('r )2A E(2-ri1) l( E91+ !A~E E,-E91J, A
\l g (+i) 2  Ell - 2)(\E-E- A

Eq. 22 does not include the special cases where i, or C2 = (mar. These endpoint cases ".er,

treated in our computer program.

After a knock-on collision has occurred, the primary electron, with energy E,,, has undvrjune

angular deflection ,; given by

Cos.,; l = (1•-(r+2) 0I
2 + (1-c)r

22



Energy Group
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* The angle X between the knock-on

* secondary and the incident primary

gy electron directions is given byuiC]

CosX , (24)
E i6 -1 +4

* The Legendre coefficients of the angular

E g,, deflection dependence of the primary

* elect ron downscatter crozs section

0 -- g"it are then given by

E, g
9 •1-of= a i 1- 1,,P(cos.) (25)

The corresponding Legendre coefficicnts

for the direction of the secondary

EG G electron are

al.-90= 0 5 _1 S ,.s,,PI(cosx) . (23)

Fig 12 Electron energy group structure Showing relative

positions of primary and secondary electron energies

With some experimentation. wve found that Cmaz could be adjusted to impose realistic

limits on the primary electron energy loss due to knock-on collisions. While the theoretical

value for c,.z = 1/2, stepwise examination of the integrated values of Eq.17 revealed that

such occurrences were rare. The best agreement with Monte Carlo was obtained with the

following upper limits on the knock-on electron energy: for primary energy 5 MeV and above,

E,ec = 2 MeV; for primary energies below 5MeV, E,."C'O= 200 keV. To account for the

energy carried off by the secondary electrons, a separate transport calculation for the knock-

ons was performed. Figure 13 shows the total energy deposition profile, obtained using the

knock-on algorithm, for the 20 MeV beam source on HO. Even though agreement with the

EGS4 result is much improved in the first 1.5 cm. over that shown in Fig. 10, this calculation,

also in contrast to the Fig. 10 curve, consistently underestimates the dose in the region beyond

the profile maximum. It is clear, from the abo-;e results, that improvement in both the

knock-on algorithm and the energy discretization , ae is required.
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Figure 13. Energy deposition (electron + photon) profile, as calculated with ONETRAN {q

(curve) with ITS-TIGER12 '(solid histogram) and EGS4(7
)(dashed histogram), in semi-infinite

H20 for 20 MeV electrons incident at an angle of 0'. The knock-on electron contribution is

included in this calculation.
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Structure of te Counled Electron-Photon Disr rdinates Programs

We wrote and/or modified programs for the one-dimensional coupled electron-phiaton

discrete ordinates calculation with a modular design consisting of four sections:

1) an interactive (with the user) program to collect the user-specified information which

defines the problem to be run and translates this information into an input data file

formatted to be compatible with the cross section and transport codes.

2) cross section generation programs which are modified versions of DATPAC ' (for

electrons) and GAMLEG[14 1(for photons).

3) data handling programs to couple the electron and photon transport calculations by

converting and passing data between them; compute quantities such as energy

deposition profiles, energy and angle spectra; prepare plot data files.

4) ONETRAN[1] transport code.

Of the above, the programs in the second and fourth categories are well documented by

their originators. The linking programs, third category, perform perfunctory programming

task-. The first program, the user-calculation interface, which is run interactively, has self-

explanatory prompts, and the input format from the keyboard is free form. We wrote two

versions of this program, one in BASIC and one in FORTRAN-77, so that it can be run either

on an IBM PC or compatible (BASIC version) or on a mainframe such as VAX or MicroVAX.

The user is interrogated regarding such problem-defining items as the number of mat -'`06 in

the scattering medium; the chemical composition (element symbol and weight f.ac*;. a of ,'ach

material; source type (electron, photon, angular distribution, spatial distrubu.-.a. en,

spectrum); whether a photon transport calculation is to be run; whether a knock-ciA c. :culation

is to be included; ec. This program also creates the list of files (with defiritions and names

linked in a directory) to serve as repositories for data (such as electron and photon fluxes,

cross sections, plot data). These files are used by the data handling programs (category 3,

above) and ONETRAN. This program also contains provisions for eliminating redundant

calculations of cross section sets by providing the user with the opportunity to specify the

names of already existing cross section files which may be pertinent to the problem to be run.

A run of this program results in the creation of an "input run deck" for the transport

calculation on the mainframe. If the BASIC version is used, the "run deck" file is written to a

floppy diskette which can then be transferred to the mainframe for a batch mode transport

calculation. A hard copy of the prompts, responses, run file and a data file directory is

printed.
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t. .LECT11 TRANSPORT CALCULATIONS IN N , TWO- AD T.HREE

DIMENSIONS

1. Introduction

During this report:ng period, there were many opportunities to provide benchmark

electron transport calculations for the purposes of testing newly developed one- and two-

dimension electron transport techniques and scattering cross section formulations. Most of the

benchmark calculations were made using the Monte Carlo method. In addition to performing

benchmark Monte Carlo and S, calculations in one-dimension1 19], we also wrote a new single
[21]collision, electron Monte Carlo (1-d) transport code for the purpose of testing the

effectiveness of a new scattering cross section, the "smart" cross section.

Our participation in research in the area of two-dimensional electron transport calculation

methods consisted of providing benchmark Monte Carlo calculations, using the ITS[21 `Series

ACCEPT code, for two papers. The first[ demonstrated the feasibility of using the "'sziart"

cross section in conjunction with first collision (or once-scattered) sources for electron beani S,,

calculations. The second of these(2 ]represents a continuation of the electron beam source

work. It contains, however, a more extensive set of comparisons between Sn and Monte .C'arlo

results consisting of isodose contour maps and energy deposition profiles in one-dimension

across the two-dimensional scattering medium.

We conclude this chapter with a discussion of three-dimensional electron tran.-,port

calculations. A recent paper[24J which reports the results of a set of S, and Monte Carlo

calculations of energy deposition in and electron exit currents from realistic microelectronic

device geometries due to the incidence of a beam of electrons. We provided the device

geometry description and mock-up as we'l as the Monte Carlo calculations for this paper.

2. Monte Carlo and _n Calctilations of Electron Transoor t in One-Dimension for Validation of

the Method of Strearminag Ravs

In a paper which appeared in 1987['~', a complete description was given of the application

of the method of :treatiinig rays to one-dimensional electron transport problems. Earlier

papers (op. cit.) had already demonstrated the applicability of this calculation method to

neutral particle transport in two-dimensional media with void regions and time-dependent one-

dimensional problems. The similarity bet.veen the time-dependent neutral particle tran-por'
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equation and the Spencer-Lewis equation for electron transport strongly suggested the

applicability of the streaming ray (SR) method to this problem. In the Spencer-Lewis

equation, the electron energy is the continuous-slowing-down-approximation (CSDA) defines a

unique relationship between the electron pathlength and stopping power. The reason for

employing this approximation is that the major mechanism for electron energy loss, inelastic

coliisions with other electrons, cannot be treated in a tractable way by a form of the transport

ec~uation that considers one collision at a time. There are far too many of these collisions, and

the electron energy loss resulting from an individual inelastic collision is miniscule. The SR

method is highly compatible with CSDA because the SR model assumes that the motion of an

electron is assumed to take place along a streaming ray (a characteristic line of the Spencer-

Lewis equation). With the SR method the electron pathlength/energy increases/decreases

continuously. This is the basic point of departure from thc conventional multigroup Sn

method in which the spatial dependence of the Spencer-Lewis equation solution is obtained by

finite differencing over a series of discrete steps for a given constant energy value. When. by

means of an iterative spatial differencing scheme, the equation is balanced for a particular

energy group, the electron energy is then decremented by a discrete step to the next lower(in

energy) group.

Numerical errors associated with the spatial and energy discretization of the S, method

give rise to artificial straggling. In some cases this leads to a fortuitously close agreement with

Monte Carlo and experimental measurements of energy deposition because the Monte Carlo

method is capable of accouinting for the actual physical straggling, the departure from CSDA.

Numerical straggling in the S,, method introduces large errors in the calculated electron energy

spectra unless a very large number of energy groups is used. This effect is greatly reduced

with the SR method. Ref. 19 provides a method for simulating physical straggling in addition

to CSDA in the transport calculation. Fig. 14 shows a comparison of energy deposition results

obtained with the SR, Sn[iI and Monte Carlo[2] methods. These results were obtained for the

case of a slant source (,uo = .916667 , see Fig. 14 inset) of 0.2 MeV electrons on a 0.04 g/cm2

Al slab. The SR calculation was formulated and performed by Filippone, while the S, and

Monte Carlo calculations were done by Woolf. As can be seen, the SR calculation, which has

straggling effects included, agrees better with the Monte Carlo benchmark than either of the 2

S,, calculations.
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Figure 15. CSDA transmission spectra, as calculated by the SR, Monte Carlo and S, methods,
for 0.2 MeV electrons obliquely incident (iu0 = 0.916667) on a 0.04 g/cm2 thick Al slab (Ref.

19).
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Fig. 15 shows the CSDA transmission spectra for the same 0.2 MeV source geometry.

llowever in both the SR and Monte Cailo calculationis. CSDA was assumed kthat i,. the

straggling effects vNere omitted on purpose). The "countershove" correction, refer:'ed to in the

figure. is a method devised by Filippone to correct the spatial discretization errors associated

with cell-collided Cec'Crons. SR treats the collided and uncollided portions of the electron flux

separately. The uncollided part is treated exactly, while the collided part, generally much

smaller i.. for example. extended transport corrected cross sections are used, is treated in the

same maniier as in S,,. As can be seen from Fig. 15. the SR and Monite Carlo results age ree

very well, while eveln the SO group S,, calculation is far off the mark above 0.13 MeV. The

delta function referred to in the figure occurs at the maximum energy at which the uncollided

elect rolls (an cme.'rae from the slab, given the slant path and CSDA. Fig. 16 compares the SR

and Monte Carlo benchmark calculations with the inclusion of physical straggling. Again the

agreement between the two methods is good.
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Figure 16. Transmission spectra, as calculated by the SR and Monte Carlo methods, for 0.2

MeV electrons obliquely incident (/u0 = 0.916667) on a 0.04 g/cm2 thick Al slab. Straggling

effects are included in both calculations (Ref. 19).
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3. .Mplementati._f. Qf SMART( 20 1 Scattering Theory in One-Dimensional Monte Carlo Electron

Transrnort Calculations*'

The SMART-%scatterirg cross section, originated by Filippone, is a representation of an

angular redistribution function for electron scattering based on Goudsmit-Saunderson theory

(see Ref. 20). The Goudsmit-Saunderson multiple scattering theory allows one to obtain

infinite medium solutions for the Spencer-Lewis equation. The basis of SMART scattering

theory is the conjecture that the validity of the scattering theory, and its representation

through the scattering matrix should not depend on the problem geometry. A rigorous

treatment of SMART scattering theory is given in Ref. 20, thus it is not necessary or

appropriate to repeat it here. As a result of collaboration between Drs. Filppone (Univ. of

Arizona) and Woolf (Arcon Corp.) a paper was written and published, first in a meeting

proceedings ,211, and then in Nuclear Science and Engineering 21b)describing the

implementation of this cross section, in scattering matrix form, in a Monte Carlo electron

transport code written by Dr. Woolf. The term "SMART" is a acronym for simulating Lj.any

accumulative Rutherford trajectories. These scattering matrices were originally developed for

implementation with the discrete ordinates (Sn) method. One of the purposes of performing

these Monte carlo calculations was to demonstrate that the validity of the SMART scattering

theory did not depend on the method of implementation; that its applicability to the S"

method wa. not due to a numerical artifact of the method. The other purpose of this work

was to introduce a possible alternative means for performing electron Monte Carlo calculations

to the implementation of multiple scattering theory as manifested in the ITS code series[ 1 . It

was felt that application of SMART scattering theory in the Monte carlo method could result

in a more economical means for performing these calculations than those which presently exist.

This is due in large part to the fact that an essential characteristic of this theory is a large

effective mearn free path for electrons, much large than the true single collision mean free path.

The extent to which this feature would result in a more economical calculation than that

afforded by, say, the TIGER12 ]code, which employs a multiple collision cross section ahd is also

much more economical than true single collision Monte Carlo, remained to be determined by

the results of this paper.

The Monte Carlo code written for the implementation of the SMART scattering theory,

incorporated a single collision trajectory analog algorithm. It departed from conventional

Monte Carlo algorithms in two important ways: 1) the calculation of the intercollision distance
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takes into account the variation of the total cross section with electron path length and

direction. and 2) the direction cosines of the electron trajectory after a collision has occurred

are obtained directly from the scattering matrix. The total electron trajectory path length,

determined from the electron CSDA range, was divided into a number of equal path length

steps As. The intercollision path length was determined by 'ampling the well-known

exponential attenuation laws. When, along the intercollision parth segment, a given As step

was traversed, the total cross section, a function of path length and direction, was updated.

The presently existing form of the Monte Carlo code treated one-dimensional :lab

geometry problems. Extension to two- and three-dimensions would be straightforward. For

purposes of testing the code, two 200 keV electron source configurations, beam and isotropic,

were assumed to be incident on two thicknesses of Al , .01 g/gm 2 and .02g/cm2 . The incident

obliquity of the beam source was defined by its cosine uo= 0.916667. The results obtained

with this code, emergent energy spectra and energy deposition profiles, were compared with

benchmark runs of TIGER[2 1 . A sampling of the results given in the paper are shown in Figs.

17.20. A comparison of the transmission spectra (SMART and TIGER) through 0.01 g/cm2

Al is shown in Figs. 17 and 18 for the beam and isotropic sources, respectively. Beam source

reflection spectra for the thicker slab are compared in Fig. 19. Finally, the energy deposition

profiles for the beam source in .02 g/cm"2 are compared in Fig. 20. As can be seen, the results

obtained with the SMART Monte Carlo calculation compare very well with the TIGER

benchmarks. Both codes were run with 10000 electron case histories. In all cases tested, it

was found that the SMART matrix Monte Carlo calculations ran approximately 3 times faster

than TIGER. Since our code was developed for research rather than production purposes, it is

likely that this run time ratio could be improved.
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Figure 17. Transmission spectrum for a 0.2 MeV electron beam source. with incident obliquity

V, = 0.916667. incident on a 0.01 g/cin 2 Al slab, as calculated by SMART cross-section

Monte Carlo and ITS-TIGER"-" Monte Carlo (Ref. 21).
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Figure 18. Transmission spectrum for a 0.2 MeV electron beam source, with incident obliquity

p0 = 0.916667. incident on a 0.02 g/cm2 Al slab, as calculated by SMART cross-section

Monte Carlo and ITS-TIGER 1 1 Monte Carlo (Ref. 21).
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Figure 19. Reflection spcctrum for a 0.2 MIeV electron beam source. villi incident obliquity PC
= 0.916667, incident on a 0.02 g/cniO Al slab, as calculated by SMART cross-section Monte
Carlo and ITS-TIGER1 21 Monte Carlo (Ref. 21).
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Figure 20. Energy deposition profile for a 0.2 MeV electron beam source, with incident
obliquity yo = 0.916667, incident oj a 0.02 g/cm2 Al slab, as calculated by SMART cross-
section Monte Carlo and ITS-TIGER 2) Monte Carlo (Ref. 21).

33



4. Electron Tra,,sport Calculations in Two-Dimensions (22,3

4.1 Determination of Dose Profiles and Isodose Contours for 200 ke Electron Transport Ln

Two-Dimensions

In a paper that resulted from a collaboration among W. L. Filippone, S. Woolf and J.C.

Garth (22], it was reported that the Spencer-Lewis equation for electron transport in two-

dimensions was solved using the S, method with diamond differencing in the spatial and

pathlength variables. Dose profile calculations in two-dimensions were made for 200 keV

electrons incident on Al. The electron source configuration were of three types: 1) normally

incident beam; 2) beam with slant incidence (45"); and 3) isotropic incidence. Comparison

runs were also made with the ACCEPT [2)Monte Carlo code.

In two-dimensions, the Spencer-Lewis equation for the electron flux O(x,y,s,(Q) is given

byt-
22 1

( + + - + Q, - +-a(s)) P(x,y,sJ2) f dQ'a(s,Q'-4Ot)O(x,y,s,Q') + Q(x,y,sfQ) , (24)
4:?r

where Q, Sly = the x and y velocity direction cosines,

s = electron pathlength,

a(s) = total scattering cross section.

differential scatering cross section,

and Q(x,y,s,4) = electron source density.

The energy deposition function, W(x,y), is determined from the Spencer-Lewis solution

O(x,y,s,4) as follows:

W(x,y)- =J�sdEJ(x,y,s) ds, (25)

where

I sEI is the electron stopping power, and O(x,y,s) is the scalar flux.

Eq. 24 is solved using the Sn method with diamond differencing. The solution steps are

outlined in Ref. 22. Because of the extreme anisotropy of the electron scattering kernel,

SMART1 20 1 scattering theory was employed to render the Sn numerica! solution feasible. An

effective scattering matrix was defined in order that the required number of discrete ordinates
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for the description of the angular redistribution of electrons would not exceed manageable

limits. Figures 21 and 22 are isodose contour plots of the energy deposition in Al for normal

and 45" electron beams, respectively. In both cases, the dimensions of the Al rectangle were

0.01 x 0.02 g/cm2 . For a direct quantitative comparison with the Monte Carlo method. we

ran the ACCEPT [21 code, which is a three-dimensional electron Monte Carlo program, for the

two cases shown in Figs. 21 and 22. The two-dimensional problem geometry was simulated

by extending tne z-coordinate of the scattering medium to essentially ±oc, where "c" is taken

to be -1.5 electron range units. Figures 23 and 24 show comparisons of dose profiles obtained

with S,, calculations and ACCEPT. These profiles are the integrated (over area) doses

across the rows A. B. and C as indicated in the accompanying cell diagram. In Fig. 23. the

isotropic source results for two S, calculations, SS and S12 , are compa,'ed with Monte Carlo,

while in Fig. 24, the corresponding comparisons for the normal bearm source results for Sj znd

Sr is are shown. As can be seen, overall agreement between our Monte Carlo calculation. and

Filippone's S,, calculations is very good.
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0.07.

0.018
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0.012
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X (g/cm 2)-.
Figure 21. Energy deposition (isodlose) contour 2plots for a 0.2 MeV electroni beam normally

incident on Al rectangle of dimension 0.02 g/cmn x 0.01 g/cm 2 (Ref. 22).
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0.002

0.000 0.002 0.004 0.006 0.008 0.01

X (g/cm 2) -.
Figure 22. Energy deposition (isodose) contour plots for a 0.2 MeV electvon beam incident at

a45' angle on Al rectangle of dim-ension 0.02 g/cm 2 x 0.01 g/cmn2 (Ref. 22).
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..2 Two-Dimensional Electron Transport Calculations with Once-Collided Beam Sources

In a continuing collaboration among W.L. Filippone, S. Woolf apA J.C. Garth on two-
[23]dimensional electron transport problems, a paper was presented at the November. 1987

meeting of the American Nuclear Society in which the ute of analytic first collision (or on~ce-1.

collided) electron sources was introduced into two-dimensional S,, electron transport

calculations. In previous one-dimensional electron transport calculations, it was found that S,

calculations could not be done for beam sources unless an analytically derived once-scattered

source was used. This was due to the high degree of anisotropy associated with electron

scattering kernels. While in two-dimensional electron transport S. calculations incorporating

the SMART cross section, this anisotropy could be handled without the aid of the once-

scattered source[22J, it was believed that use of such a device, in conjunction with the SmAI'T

cross section, could gieatly improve the accuracy of these calculations. As in the paper

discussed in section 4.1, we provided the Monte Carlo benchmark calculation for this work. A

200 keV beam of electrons was assumed incident on an Al slab of dimension .01 g/crn" x .02

g/cm2 . The angle of incidence in the x-y plane was 45, and the point of incidence was located

at x=0, y=.01, as shown on the inset of Fig. 25. Also shown in Fig. 25 are the two energy

deposition results, S, ( S4) and Monte Carlo (ACCEPT [i, 100000 case histories). To aid in

the interpretation of the diagrams of Fig. 25, it should be pointed out here that the

rectangular slab was divided into 50 square zones (.002 x .002), and the histograms display the

energy (keV) deposited in each zone. The results appear to agree well. The advantage in

computation speed of S, over Monte Carlo became especially apparent in this work. It was

found that the S4 calculation consumed -1/30-th as much computer time as did the Monte

CaL 10.
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L Eectron Transport in Three-Dimensions

Throughout all of the previous one- and two-dimensional electron transport research in

which we have participated, a primary objective, in addition to achieving high computational

accuracy, has been to achieve a high degree of realism in our modelling capability. In pursuit

of the first objective, consideration of realistic three-dimensional device geometries was

postponed until the present. Also causing delay in this regard was the unavailability, until

recently, of a good three-dimensional electron Monte Carlo program, and finally, the lack of

adequate descriptions of realistic microelectronic device geometries. The availability of the

ITS[ 21 Monte Carlo code series has satisfied the first requirement, while the appearance of two

papers [5.26 in the 1987 IEEE Transuctions on Nuclear Science, in which two microelectronic

device geometries were published, satisfied the second. The work to be discussed here, resulted

in the presentation of a paper at the American Nuclear Society Mathematics and Computation

Topical Meeting 2 1 . This paper will appear in Nuclear Science and Engineering in early 1990.

In Ref. 24 is reported the extension of Filippone's S,, method for solving the Spencer-Lewis

equation for electron transport to treat three-dimensional multiregion problems. One of the

key points of this work was the utilization of the flux continuity condition, which is generalized

for muitiregion problems by expressing the flux as a function of electron energy rather than

pathlength. Such a representation results in a set of S,,/diamond difference equations which

are nearly identical in form to conventional S,/diamond difference equations. The S" method

was then used to calculate electron energy deposition due to 200 keV electron beams incident

on problem geometries typical of silicon and gaillium-arsenide semiconductor microelectronic

devices. Our roles in this work were: 1) to research and define the realistic device geometries;

2) to provide quantitative descriptions of these silicon and gallium-arsenide device geometries

for modelling purposes; 3) to define the inputs required by the ACCEPT Monte Carlo

calculation; and 4) to aid in the interpretation and presentation of the results.

A fairly extensive discussion of the theory of the three-dimensional Sn calculation method

was included by Filippone in Ref. 24, and thus need not be reviewed here. The result of the

electron transport calculations were presented in the form of energy deposition resulting from

the incidence of electron beam sources on problem geometries typical of semiconductor

microelectronic devices. The configurations we chose to work with are based on fairly detailed

descriptions of: 1) a silicon (Si) hybrid diode-resistor[2 5 ); and 2) a gallium-arsenide(GaAs) field-

effect transistor[26]. The final configurations for the device geometries that were used in our
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calculations are simplified versions of these, however their essential geometrical character and

material compositions were preserved. The Si device geometry is shown in Figure 26.

The S, code was run for 200 keV electron beam sources incident at a slightly off-center

point: x=O-pm, y=2Spm, z=Opm for the Si device (as shown in Fig. 25). The incident beam

orientation is given by 0=90%, 0=45%, where e is the polar obliquity with respect to the z-axis

and 0 is the azimuthal angle in the x-y plane. The scattering cross sections were taken to be

screened-Rutherford.

We made independent calculations of energy deposition using the ACCEPT module of the

Integrated TIGER jeries(ITS)[ 21of coupled electron-photon Monte Carlo codes. The ACCEPT

code was run using the screened-Rutherford cross section with the CSDA (no-straggling)

option. In this way it was possible to ensure that both the SN and Monte Carlo calculations

were based on the same physical model. Sufficient numbers of Monte Carlo case histories

(106) were run so that valid benchmark results could be obtained. The estimated standard

error was <1 percent in all of the Monte Carlo tally cells for which the energy deposition

exceeded 1 percent of the maximum value. The worst cases, 5-6 percent error estimates, were

encountered in only 2 of 129 cells for the Si calculation and I of 120 cells for the GaAs

calculation. In these instances the energy deposition values were less than 0.1 percent of the

peak value.

The energy deposition results, S, and Monte Carlo, for the Si device mock-up are shown in

Figures 27a and 27b, respectively. The data shown result from integration, over the z-

coordinate, of the energy deposited per unit volume in the region bounded by the gold cap, and

are therefore given in units of MeV/cm2 . The energy deposition results obtained with Sn were

found to compare well with results of ACCEPT Monte Carlo calculations. The agreement

between the S, and Monte Carlo results for the GaAs device configuration is qualitatively

similar. This comparison is shown in Ref. 24. Computer run times required for the Sn

calculations were found to be lower than that required for Monte Carlo by factors ranging

from 30 to 50.
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Figure 27a.Three-dimensional Sn calculation of energy deposition (MNeV/cm 2) resulting from a

45' electron beam iticident. in a Si device. Source energy =0.2 MeV (Ref. 24).

1 Monte Carlo

2n 40
40

Figure 27b.ITS-ACCEPT J2 1 Monte Carlo calculation of energy deposition (MeV/Crn 2) resulting

from a 45' electron beanm incident in a Si device. Source energy = 0.2 Me\' (Ref. 24).
44



JV.. LOW ENERGY TRANSPORT fa:. 2"20l

1. Introduction

We have written computer programs and performed calculations to model the inelastic

scatter and transport of electrons with very low energy (0 - 20 eV) in SiO 2 . The inelastic

scatter can occur via two processes: 1) ionization and/or excitation collisions with other -

electrons; f•nd 2) electron-phonon interactions. The first of these can occur in SiO 2 only for

electron energies above the ionization threshold of 8.9 eV. It is believed that the second of

these processes, interactions with phonons, can occur across the energy range 0 - 20 eV. Our

principal activities in this research area have consisted of three projects. The first of these is

the interpretation of electron-phonon scattering theory and its translation into a set of

numerical algorithms, and a computer program (PHONON), for the evaluation of basic

scattering parameters, such as scattering cross section, scattering angle distributions, and

effective stopping powers. The second task in this project is the incorporation of the above

calculated parameters in a Monte Carlo transport code (LOWEND) for electrons in the 0 - 20

eV energy range in SiO 2 . The third of these is the application of the method of discrete

ordinates (Sn), a determininstic method for the numerical solution of the transport equation.

to electron-phonon scattering.

"2. PHONON: Computer Program for the Evaluation of Jth Bl.ja Parameters of Electio.1-

Phonon Scattering

Electrons of very low energy, below ionization threshold, can undergo inelastic scatter

through the electron-phonon interaction. These are interactions with the lattice and rebult II

phonon emission or absorption. Specific information relating to the evaluation of electron-

phonon cross sections, stopping powers and scattering angles comes to us by way of the both

private communication and open literature .] The theoretical basis of the contents of this

section is adapted from the work of Ashley [27 and applies to electron-phonon scattering in

SiO 2 . With this theoretical basis, we designed the numerical algorithms and wrote the

computer program PHONON for the evaluation of the cross sections, stopping powers and

scattering angle. Some of the results of our calculations to be shown here also appear in Ref.

28. Electron-phonon interactions occur in two modes, longitudinal (LO) and acoustic (ACj

There is a total of 6 interaction modes, 4 LO and 2 AC. This arises from the fact that both

the LO and AC modes may result in phonon emission (electron energy gain) or phonon
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absorption (electron energy loss), and there are 2 discrete phonon energies to consider for SiO 2

(hwp = 0.068 eV and 0.153 eV[wp is the phonon frequency]).

=.LQ_ oe

2 Inverse Mea Fre Path

The inverse mean free paths for the LO modes are given by the following expression[271

W*(E)
2 "2

AL(E) e wf [ý'L 4',1 (n,+~) 49

W, (E)

1-2 W±(E)

WvE (26)

where \-I = inverse mean free path for phonon emission,

,-IO -= inverse mean free path for phonon absorption,

WP -= phonon frequency,

v = incident electron velocity,

too = Si0 2 dielectric constant in the optical region,

CO -= SiO 2 static dielectric constant,

nw• = (exp(hw/kBT) -1)-i,

kBT = .025 eV,

q = wave number corresponding to electron energy gain (+) or loss (-)

The total inverse mean free path (crose section) for the LO mode is then given by

,\-I = L + -1  (27)
LO+,LO + A-,LO

The upper and lower limits of the integral in Eq. 26 correspond, respectively, to the maximum

and minimum possible q values: if the incident electron kinetic energy is denoted as E, then

W*(E) = min{ko(1+ji- )I, kBZ }, (28a)

and
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W±(E) = ±kO 1- T~~ hw (28b)

where

hko = 2 ,E

m" - electron effective mass,

and kBz is the wavenumber corresponding to the Brillouin zone threshold energy.

The qujantity [& .1] has two values, 0.0816 for hwp=0.068 eV and 0.112 for hw-=0.153 eV.

2..2 S_ aering Angle Distribution

The distribution of scattering angle cosines, cosO:, is determined from momentum and

energy conservation and is given by[27]

coso (E) = 1-q2 /2k±2okhwp/2Eco±i.LO(E = • ,29)

where, as before, the momentum tranfer wave number, q, ranges from W±(E) to WN:(E).

The average scattering angle cos:ne < cosO±.LO(E)> is obtained from

XV±E W (E)
< c°S0+o E) =L "(l-q 2/2k2 ±thwp/2E)/ 1:F hw/E I d-q.

< s±,LO(E)> = If q 0 1 (
WX (E) W, (E)

(1 :hw,/2E) ln[W. (E)/W±(E)] - --L[W21(E)2•W±(E)2]2 (E(30)

2.1. Stopping Power

The expression for the LO mode stopping power is given by127]

dE; e ± WP 6 n+±~~ 1 ~2 (CO(C)
dXLO± v2  n,!± kIn W±(E) (31)
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') ") &C Modes

2.2.1 Inverse .Mea Free Path

The inverse mear, free paths for the AC modes are given by[2 :

±3IAC 3m" dq [ (n(q) + 1:) 1321
4- AC 4 ,MN.h2 k• k -P(q) 2?

0

where N1 and Ne are, respectively, the mass and density of the SiO2 unit cell

and

q±a = { 2ko :F 21*C,/h , q < kBz

ko (1 + ll::FCkaZ/E) ,q >kBz

n (q (e aq-1)"1 , q < kBz (4n(ql) = (34 q)k 6

S(e akez-.1 Y, q e!ksz

SCq , q<kBz
wp(q) = (;35)1C~k8 z , q~k~z

C, = velocity of sound in SiO 2, and

a--iPC,/kBT

". Scattering Arl itiuil

For the AC modes the distribution of scattering angle cosines cos0± is also determined

from momentum and energy conservation and is given by{27)

1-q 2/2k •:,t h,(q)/2E

-- = 1: hap(q)/E (36

where the phonon frequency wp(q) is now dependent on the the momentum transfer wave

number, q, as given in Eq. 35. In contrast to the LO case, an exact analytical expression

cannot be derived for the average scattering angle cosine < cosOl±.AC(E)>.
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q4 q liCnq)+ 1,± 1j(1-q2/2k°2 ± h"/2E) q 3 ,,qnaz37
< CoSO AC(E)> - dq -• ddq -• .n(q)±i-.37)

0 p0

must be evaluated numerically.

2.2.3 Stopring Power

The expression for the AC mode stopping power is given by(271

qa•dE] _A 3m" dq q nq

0

Numerical Evaluation of Scattering Parameters

The above expressions for the electron-phonon inverse means free paths, scattering angle

distributions and stopping powers were evaluated in our computer program, PHONON. Siiice

the expressions for the longitudinal mode parameters (given by Eqs 26,30,31) are analytic and

do not involve complicated numerical evaluation of special functions, tables of these quantities

as functions of electron energy were generated in a straightforward zranner. Algorithm

development for numerical evaluation of the acoustic mode parameters was somewhat more

involved. The integral expressions (Eqs. 32,37,38) could not be evaluated analytically without

approximation. We divided the region of integration into 3 sub-regions: 1) 0 to q1 , where the

energy fraction htwq/k 8 T = 0.005 ; 2) q, to kez ; and 3) kBz to qmaz •

In the first sub-region, recalling Eq. 35, we made the following approximations

(1 T ttCq/E Y I ±t+C,q/2E , (39)

arid
n(q) -• k'" (40)

With these approximations, the integrands of Eqs. 32,374,38 become simple algebraic functions

of q which are then evaluated exactly.

The second integration sub-region, q, to kez' is handled with our adaptive Gaussian
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quadrature numerical integration program, AQG4. This program employs the method of

interval splitting to perform the numerical integration to within a user specified accuracy. If

such accuracy is unattainable, due to the functional form of the integrand or computer

limitation. AQG4 informs the calling program through informative diagnostics.

Finally, in the third sub-region, both ;.p(q) and n(q) take on constant values, so that the

integrals of Eqs. 32,37,38 are evaluated analytically. We made extensive calculations, for the 4

LO and 2 AC interaction modes, based on the above theory for the electron-phonon scattering

cross section, mean scattering angle cosine and stopping power in SiOQ for subionization

electrons (E < 8.9 eV). In Fig. 28 we show a plot of the total scattering cross section,

averaged over the LO and AC modes. Fig. 29 is a plot of the mean scattering angle cosine

averaged over the LO and AC phonon emission modes (solid curve). The dashed curves show

the contributions on the LO and AC emission components indivý4ually. Finally, Fig. 30 is a

plot of the electron-phonon interaction stopping power, averaged over the 6 modes.

Tabulations of the electron-phonon cross section, average scattering angle cosine and

stopping power were compiled using the PHONON program and then incorporated into oar

low energy electron transport Monte Carlo trajectory simulation program, LOWEND (to be

discussed in the next section). It was then possible to obtain, through trajectory simulation,

electron energy spectra, energy loss(gain), and drift velocity values in the presence of an

applied electric field for subionization electrons in SiO.
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Figure 28. Total electron scattering cross 0.94- LOC
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Figure 30. Electro, stopping power
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acoustical pl.oncn excitation modes, in
SiO, for the sub-ionization threshold
energy region (Ref. 28).
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LOWEN-D Monte CrLo Simulation ProLral for Subioniza tioa L -Elecrron,

Transport

3. Overview

The physical parameters governing the transport process for low energy (subionization)

electrons were calculated with program PHONON and then supplied through a set of tables to

our single scatter Monte Carlo program LOWENDt 25 1 . These tables consisted of the following

energy-dependent entries for the electron-phonon interaction: 1) total inverse mean free path,

A-l: 2) total stopping power , dE/dx; 3)scattering angle average cosine. <cos.J>. The total

inverse mean free path and stopping power values were obtained by summation over the 4

longitudinal and 2 acoustic phonon emissiun and absorption modes, while the scattering angle

cosine values were obtained with a summation over the 6 modes weighted by their respective

probabilities of occurrence.

The main features of the LOWEND code are that it accounts for: 1) electron energy loss

and scatter with both LO and AC phonons; and 2) energy loss/gain in the presence of all

applied electric field. With this code it is possible to obtain, through trajectory simulation.

electron energy spectra, energy loss(gain) or AE distributions, and drift velocity values in the

presence of an applied electric field for subionization electrons which appear in SiO'2 as a result

of inelastic scattering processes. The electric field values for which this program has been

tested range from 0 to 10 MV/cm. In this calculation electron trajectories are simulated in

direct analog Montc Carlo fashion. It was found that 5000 - 10000 electron case histories were

sufficient to produce statistically adequate results for energy spectra, while 1000 histories

proved sufficient for determination of averaged quantities such as drift velocity. The above

estimates appied provided that the case histories were allowed to run for a sufficiently large

number of simulated collisions to produce quasi-equilibrium conditions (small variation of

energy spectrum shape and magnitude) over a large spatial region (300-1000 A). This

condition gave rise to a "rule of thumb" that 600-1000 collisions per case history were

adequate for electric field (9) values below 5 MV/cm, while a larger number, -3000 for

determination of averaged quantities and -10000 for energy spectra, were required for 8 = 10

MV/cm. Typical run times for the Monte Carlo program ate on the order of 0.6 hr/(1000

histories) on the AFGL VAX 8650 computer.
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SElectron Traiectories in the Presence .f & an A12id E Fri e Eld

The action of the applied field, 9. is to transform the electron trajectory path segments

into parabolic sections. For short patl- segments, this curvature can be ignored and the

calculations can be made on the basis of a straight line segment approximation. The length of

the segment, As, is chosen by random selection from the path length probability distribution

(via the usual inversion of the exponential attenuation rule, ).(E) is taken to be the mean free

path). The energý change is then given by

As/v 0

AE-=-EF.ds "f F.vdt

As/vo

= f (E0o- + at)dt +.- 1

•vhere F -- E = + eo'i, dE = electron stopping power,
dx dx

1 d E. + -i, e = electron charge,

.i =- cosO = velocity direction cosine along g di.ection.

Insertion and integration yields

AE = ( +E egcosO)As %,dE2+ + dEi As
Asx + (JL-'+ (eg)' + 2 d¢S As (42)

dx dx' U )2mVo

From these expressions one can calculate the velocity components and position coordii,,tc:.

Fur longer As segments, which admit of curvature and larger energy change, we liavv

used a five sub-segment approximation to the path integral for energy change. In this

procedure the values of E, cos8, A(E), dE/dx and the position and velocity coordinates arv

updated in each step. The resulting energy change is given by

- = = Z1,(,r, k)(- + e~cos0) +
k k

(IdEk'12 + er2

+ (e ) 2 + 2 ek cosOk)( r,-" r _2
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where &k "- rk_1 + Ask and r0 = 0.5, 2Ek/mk

The velocity component (vk) in the direction of the electric field (9) is given by

k1 + (,0s A) k-I ,44)
v m~dx5vn*v

. LO\VEND iCalculations _of Electron £eEnery SctrA

One of the results obtainable with a LOWEND calculation is the determination of kinetic

energy equilibrium spectra in the presence of an applied electric field. WV hen we considered

electron transport exclusively in tile subionization energy region, it was found that for a 5 eV
0

ipjection energy into SiO 2 . energy equilibrium was well established at a depth of 500 A fur a

wide range of electric field values. Fig. 31 shows calculated electron kinetic energy spectra for

3 values of & , (0.5, 4 and 10)xl0 6V/cm. When we extended the electron-phonon cross

section, scattering angle and stopping power tables to the 8.9 - 20 eV range,ionizing collisions

occurred. The ionization cross sections(28] used in this calculation, supplied by ORNL, are

shown in Fig. 32. Fig. 33 shows the electron energy spectrum in the presence of a 10'V/cm

electric field. This result was obtained using electron-phonon parameter tables extended to 20

eV and the ORNL inelastic cross sections. As can be seen, the high energy portion of the

spectrumn(>S.9 eV) accounts for a significant fraction. It was found that for fields in excess of

-7xl0 6V/cm., our predictions of the amount of electron multiplication exceeded experimental

observation. An effort is presently underway to reconcile these differences.
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Figure 32. Inelastic electron-electron scattering cross section components for SiO 2 (Ref. 2S).
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Figure 33. Kinetic energy spectrum. as calculated by LOWEND. for applied field of 107 '/cm

at 500 A depth in SiO 2. High energy tail above 8.9 eV exists due to small cross section for

secondary ionization at these energies.
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4. Transport Equation Solution for Electron-Phonon Scattering by the Method of Discrete

Ordinates f.._

Discrete ordinates electron transport calculations were made using the standard S,, code,

ONETRAN1 '1 , for low energy (subionization) electrons in SiO 2 . Preparation for these

calculations involved reformulating the electron-phonon transport parameters, cross-section

and stopping power into the multigroup format compatible with the S. method. As was done

for the Monte Carlo calculations reported in the previous section, these multigroup parameters

were derived separately for the longitudinal(LO) and acoustic(AC) mode.

4.1_ LQ jModes

4.1.1 GrouD-to-Group Scattering Crs Sections

Making use of Eqs. 26, 28a,b and 29, we arrived at expressions for the group-to-group

energy transfer cross sections.

For energy loss:

let Eg = initial electron energy, and Eg' = final electron energy , so that E.>Eg'

Then the downscatter cross section is{ Aw na, ln[q I/Wj(E,)] ; Wj'(ES) < q g' <Ws (Ey)
_'O(Eg -- Eg) = go'(45)

1 0 ; elsewhere

where hqgo, = ,2m'(Eg-Es')

There are two cross sections ._LO(E --. Ef) corresponding to the two values of hw.

Similarly, for Ej<Eg' (energy upscatter) we have

SAw (n,,+l) in[q g/Wi'(Ej)] ;W+(Ej) <5 q~e 2 •(g

0 ; elsewhere (46)

where qgs' = "2m-(E,'-Eg)

As in the p~honon absorption case, there are two cross sections a + LO(Eg -- Eg') corresponding

to the two values of ?hw.
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4.1.2 Group-to-GrouD Scattering Ag&.

The scattering angle cosines corresponding to the above are given by

1-q2 ,/2k2 :Ehw/2Eg (7

where hk, = 42m"E,

Expressions were derived for the Legendre expansion coefficients of the angular scattering

cross section for electron-phonon interactions. This was necessitated by the fact that most

discrete ordinates algorithms and codes accept and utilize the angular scattering data in this

format. The analysis for the longitudinal optical (LO) mode downscatter in energy from group

g to group g' (Eg>E,91 ) is shown below (the derivation for upscatter was similarly derived).

The average scattering angle cosine is given in terms of integrals over the momentum

transfer, q, by:

W-

2,ggf q (l.q2/2k2+llw/2Eg)
W- j

<U- I> = 1.9 w- (48)
oo 2,go

w-
where 1,gg

w- = .f•2rn(E,-E,'+1/2) (49a)

w- ,= • E#-•EV:.,-1/2) ,(49b)
2,1g

with the restrictions that

min[ w-] = WVj-(Eg) =k,(o1.Tw (50a)

and

max[w-,,,] = W'(Eg) = min{kg(1+ i ), kBZ}, (50b)

where hk = 4j2rnE , m" is the electron effective mass and kBZ is the wavenumber

corresponding to the Brillouin zone threshold energy.
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The Lcgendre expansioi: fur the angular scattering cross section is

o(p) = Zu(-i-/2cTIPl() , (51)

where

a, p() P,(p) du (52) Energy Group
d-: EI/2

E - 1

With the following definition for the n-th moment of it E 3 / 2

E -, - 2

3
.-J 0() p" dpl Sp)

+÷ (53) 4

f a(p) du

Eg-1/2

the first five Legendre expansion coefficients are given as Eq --- g
+'. Eg+1/2 -

= f a(p) dp (54a) E1+1  -- g+1

= </>O0 (54b)

02 = J(3<p 2 > - 1)uo, (54c) Figure 34. Energy group structure

03 = J(5<p 3 > - 3</>), (54d) for subionization electrons, Si0 2

04 = 1(35<p 4 > _ 30<p 2 > +3)0o. (54e)
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The above moments of p were calculated with analytical integrations of the form

=(q (1-q 2 /2k= 2 (?2E8)
1.9 w-

f dq

Log0

Program PHONON (see sec. 2 of this chapter), which was originally written to calculate
electron-phonon cross sections for the LOWVEND (see sec. 3 of this chapter) Monte Carlo
calculations, was modified to incorporate the above algorithms for the Legendre expansion

coefficients.

4.2 AQ Modes

The acoustic mode (AC) cross sections were treated differently from the LO cross
sections. The simplifying assumption of isotropic scattering was made for the angular
dependence of the AC cross sections. This arises from the following considerations. The
maximum energy transfer in an AC collision is -0.02 eV. The average scattering angle cosine
for these individual collisions is -- 0.3 and is fairly constant until the energy approacbes values
less than 2 eV. For a reasonably sized energy group width, say 0.1 eV, outscatter to other
groups would not occur in any single collision. It is known that many such individual collisions
can occur (for much of the energy range of interest oarAC/aLO-10). Thus it was decided to
treat the AC mode case using the continuous slowing-down approximation. Since we already
had expressions for the AC mode stopping power (up- and down-scatter)as given by Eq. 38,
we could calculate Ahe cross section for transfer between adjacent energy groups as

A+ dC,; = U-•9 Ag (56) _

where (•-E)± is the AC mode stopping power.

The above cross section (Eq. 56) may be considered as representing a composite of many
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individual collisions, the number of which depends on the energy group width A'E. This

composite "collision" consists of many turn-around collisions which average out to a scattering

angle cosine -' 0 (isotropic scatter). This algorithm was also incorporated in program

PHONON. In addition, a section of code was wriiten for PHONON to convert the cross

section Legendre coefficient table into a format compatible for use with ONETRAN.

4. Results of 5 Caculations

A series of preliminary electron transport calculations were made with ONETRAN for

electron-phonon scattering. The calculations were done in the absence of aln electric field. The

electron source energy was taken to be 5 eV. The calculations were made with 100 uniformly

spaced energy groups over the energy range 0 to 10 eV. The thicl •ss of the scattering

material, SiO 2 , was taken to be 0.1 /m, with 100 spatial discretization intervals of equal width

(Az = 0.001 pum). Four source geometries were considered: 1) planar(at z = 0)

monodirectional (along z-direction) source [fig.35a]; 2) monodirectional (along z) source

uniformly distributed from z = 0.04 pam to z = 0.06 am [fig. 35b]; 3) monodirectional (along z)

source of width Az centered at z = 0.0505 pum [fig. 35c]; 4) isotropic (in direction) source

uniformly distributed from z = 0.04 pm to z = 0.06 pm [fig. 35d].

z-.

0 O.lAm 0 O.APm
Fig. 3.5a. Fig. 35b.

0 0.1'pm 0 0.1pn
Fig. 35c. Fig. 35d.

Sample plots of the electron flux profiles as calculated for 5 energies are shown in Figs. 36

and 37 for the plane perpendicular and isotropic source configurations shown in Figs. 35a and

35d, respectively.
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4.A , Treatment of Electron Transnort in the Presence of &a E2xtrna Electric Eield

Calculations of electron transport in the presence of an applied external electric field have

been done by WVienke12•9 using the method of discrete ordinates. We began the process of

modifying our ONETRAN calculations to include an electric field term. We used as a

theoretical basis the method outlined in Ref. 29.

The Lorentz force term, MýoV(E + VxB).V.O, is incorpcrated into the right-hand-side

(source side) of the Boltzmann equation. The quantities e, MO, v", E and Bare, respectively,

the electron charge, mass velocity, electric and magnetic fields. 4' is the electron flux. For our

purposes, the magnetic field portion was omitted. In this formulation, electric fields are

treated as effective sources. The electric fields are regarded as having the effect of up- and

down-scattering electrons in energy and also redistributing their directions. Slowing down and

speeding up of electrons due to electric fields are treated in the continuous

approximation(CSDA), i.e., only energy transfers between adjacent groups are allowed.

Assuming slab geometry, Wienke's treatment of the Lorentz force source term (electric field

portion only) proceeded as follows:

defining the direction cosine p in one-dimensional plane geometry,

v .x = vxP, (57)

th- gradient operator (velocity space) is given as

V a + 4+(58)

one obtains ( e5)E.V 1,4 = ( )%l[E•---(1-/ )[-u . (59)

The first term in [ above is the energy upscatter or downscatter term, depending on the

direction of E, while the second term in [] is the angular redistribution term. The first term

can be expressed in finite difference form as

e OL9,01.
( fiV/E)8l- = f(-"L)(g+im. - 0"4,-) , for p > 0 (60)

and
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( •-VME)-- = "(J-)(Og-i m - km), for p < 0 , 61)

where, as in Fig. 34, E, > E.., and t ('--E).

The subscript m denotes thie direction of the m-th discrete ordinate, s,,. Both cases above

contribute a positive downscattered or upscattered source to group g in the direction m. The

upscatter terms necessitate outer (energy) iterations in the Sn calculation.

86

The angular redistribution term, L-. was treated as a within-group collision (self-scatter)

term. Since in Sn calculations, the angular dependence of the flux is expressed in terms of a

Legendre series expansion of order M-1 in p, it is advantageous to make use of the fact that

( -/.) .--: = (21+1)

in the flux expansion, so that

eE (1-)-- =Ir(21+/4'r)Ac'P(l)- r (63)
m0 v dpT 1=0

w [(2M2  - 2M -1) a 0 C 2 -[(21 -2 1)with to -gL2+)2') and ci =f, V-0 l(2-1)l(21+3) (64)

The extended transport correction of order M-1 was used in the electric field expansion.

When the above expressions were incorporated into the discrete ordinates form of the

transport equation, all of the terms containing Opg, are then transposed to the left-hand side

(removal terms)of the transport equation and grouped into the total loss term , a'g4 m., with

the appropriate modification of the total cross section (u,). The remaining source terms

involving group-to-group transfer and angular 'edistribution will be grouped on the right-hand

side (gain terms)of the transport equation with the in-group source, the fixed source,

secondary electron source and inelastic downscatter source.

Since Wienke states in Ref. 29 that the analysis described above can be used to modify

existing Sn codes, we began the process of incorporation of the electric field terms into our Sn

calculations. This work is presently in progress. We believe that the use of another S, code,
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rather than ONETRAN, may be preferable. We have a code which, unlike ONETRAN,

directly calculates electron fluxes (rather than flux Legendre moments), and makes direct use

of the source terms (rather than their Legendre representation). Such a code may prove more

suitable for the incorporation of electric field terms than ONETRAN.
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